pUNO1-SpikeV5-dfur

Expression vector encoding the SARS-CoV-2 Brazilian variant (P. 1 lineage) Spike (delta furin) gene
 Catalog code: p1-spike-v5-df
 https://www.invivogen.com/brazil-p1-spike-expression-vectors

For research use only
Version 21E07-ED

PRODUCT INFORMATION

Contents

- $20 \mu \mathrm{~g}$ of lyophilized pUNO1-SpikeV5-dfur (plasmid DNA)
- $2 \times 1 \mathrm{ml}$ of Blasticidin ($10 \mathrm{mg} / \mathrm{ml}$)

Storage and Stability

- Product is shipped at room temperature.
- Store lyophilized DNA at $-20^{\circ} \mathrm{C}$.
- Resuspended DNA is stable for 1 year at $-20^{\circ} \mathrm{C}$.
- Store Blasticidin at $4^{\circ} \mathrm{C}$ or $-20^{\circ} \mathrm{C}$. The expiry date is specified on the product label.

Quality control

- Plasmid construct is confirmed by restriction analysis and full-length open reading frame (ORF) sequencing.
- After purification by ion exchange chromatography, predominant supercoiled conformation is verified by electrophoresis.

PLASMID FEATURES

Brazilian Variant SARS-CoV-2 Spike cassette

- EF-1a/HTLV hybrid promoter is a composite promoter comprised of the Elongation Factor-1a (EF-1a) core promoter ${ }^{1}$ and the 5^{\prime} untranslated region of the Human T-Cell Leukemia Virus (HTLV). EF-1a utilizes a type 2 promoter that encodes a "house-keeping"gene. It is expressed at high levels in all cell cycles and lower levels during the GO phase. Additionally, since the promoter is not tissue-specific it is highly expressed in all cell types. The R segment and part of the $U 5$ sequence ($R-U 5^{\prime}$) of the HTLV Type 1 Long Terminal Repeat ${ }^{2}$ has been coupled to the EF-1a promoter to enhance stability of DNA and RNA. This modification not only increases steady state transcription, but also significantly increases translation efficiency.
- Codon-optimized Spike ORF
pUNO1-SpikeV5-dfur contains the Spike (S) coding sequence from the Brazilian (BRA.) variant (P. 1 lineage). This variant is characterized by a number of deletions (del) and mutations within the the Spike coding sequence (see below). The furin cleavage site in pUNO1-SpikeV5-dfur has been inactivated (dfur) by the inclusion of two mutations (R683/5A). Furthermore, to improve expression of the S protein in cell lines, the gene is codon-optimized and the last 19 amino acids, which contain an ER-retention motif (KxHxx), have been removed ${ }^{45}$.
pUNO1-SpikeV5-dfur includes the following sequence features:
- S1 domain: L18F, T20N, P26S, D138Y, R190S, D614G, H655Y
- RBD: K417T, E484K, N501Y
- S1/S2 boundary: R683A, R685A
- S2 domain: T1072I, V1176F

Spike (S) is a structural glycoprotein expressed on the surface of SARS-CoV-2. It mediates membrane fusion and viral entry into target cells upon binding to the host receptor ACE2 and the proteolytic activity of host proteases such as furin and TMPRSS2 ${ }^{6}$.
For more information visit: https://www.invivogen.com/sars2-spike

- SV40 pAn is the Simian Virus 40 late polyadenylation (pAn) signal and it enables efficient cleavage and polyadenylation reactions resulting in high levels of steady-state mRNA ${ }^{7}$

Antibiotic selection cassette

- hCMV (human cytomegalovirus) enhancer \& promoter drive the expression of the blasticidin resistance gene (bsr) in mammalian cells.
- EM7 is a bacterial promoter that enables the constitutive expression of the blasticidin resistance gene (bsr) in E. coli.
- bsr (blasticidin resistance gene) encodes a deaminase from Bacillus cereus that confers resistance to the antibiotic blasticidin. The expression of the bsr gene is driven by the CMV promoter/enhancer and the bacterial EM7 promoter. Therefore, Blasticidin can be used to select stable clones in mammalian cells and E. coli transformants.
- Human β-Globin pAn is a strong polyadenylation (pAn) signal placed downstream of bsr. The use of β-globin pAn minimizes interference and possible recombination events with the SV40 pAn signal ${ }^{8}$.

General features of pUNO1-SpikeV5-dfur
 - pMB1 ori is a minimal E. coli origin of replication.

APPLICATIONS

Stable gene expression in mammalian cells.
pUNO1 plasmids are designed for both transient and stable transfection in mammalian cell lines by selection with Blasticidin. Furthermore, they faciliate high levels of expression of the gene of interest.

Antibody screnning by flow cytometry

pUNO1-SpikeV5-dfur has been specifically designed for mammalian cell expression of the SARS-CoV-2 S protein. Notably, due to the inactivated furin cleavage site, when this plasmid is expressed by a host cell (e.g. 293T cells) there is high surface expression of the full-length S protein ${ }^{4.9}$. Ideal for SARS-CoV-2 S-specific antibody screening by flow cytometry (in-house data).

METHODS

- Plasmid resuspension
- Quickly spin the tube containing the lyophilized plasmid to pellet the DNA.
- To obtain a plasmid solution at $1 \mu \mathrm{~g} / \mu \mathrm{l}$, resuspend the DNA in $20 \mu \mathrm{l}$ of sterile water.
- Store the resuspended plasmid at $-20^{\circ} \mathrm{C}$.
- Plasmid amplification and cloning

Plasmid amplification and cloning can be performed in E. coli GT116 or other commonly used laboratory E. coli strains, such as DH5a.

- Blasticidin usage

Blasticidin should be used at $25-100 \mu \mathrm{~g} / \mathrm{ml}$ in bacteria and $1-30 \mu \mathrm{~g} / \mathrm{ml}$ in mammalian cells. Blasticidin is supplied as a $10 \mathrm{mg} / \mathrm{ml}$ colorless solution in HEPES buffer.

TECHNICAL SUPPORT
InvivoGen USA (Toll-Free): 888-457-5873
InvivoGen USA (International): +1 (858) 457-5873
InvivoGen Europe: +33 (0) 5-62-71-69-39
InvivoGen Hong Kong: +852 3622-3480
E-mail: info@invivogen.com

REFERENCES

1. Kim D. et al., 1990. Use of the human elongation factor 1 a promoter as a versatile and efficient expression system. Gene 91(2):217-23 2. Takebe Y. et al., 1988. SR alpha promoter: an efficient and versatile mammalian cDNA expression system composed of the simian virus 40 early promoter and the R-U5 segment of human T-cell leukemia virus type 1 long terminal repeat. Mol Cell Biol. 8(1):466-72. 3. Faria, N.R.et al. 2021. Genomics and epidemiology of the P. 1 SARS-CoV-2 lineage in Manaus, Brazil. Science. doi:10.1126/science.abh2644. 4. Johnson, M.C. et al. 2020. Optimized Pseudotyping Conditions for the SARS-COV-2 Spike Glycoprotein. J Virol 94. 5. Ou, X. et al. 2020. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun 11, 1620. 6. Hoffmann M. et al., 2020. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 181:1-16. 7. Carswell S. \& Alwine J., 1989. Efficiency of utilization of the simian virus 40 late polyadenylation site: effects of upstream sequences. Mol Cell Biol. 9(10):4248-58. 8. Yu J. \& Russell J., 2001. Structural and functional analysis of an mRNP complex that mediates the high stability of human β-globin mRNA. Mol Cell Biol. 21(17):5879-88. 9. Walls, A.C. et al. 2020. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell.

RELATED PRODUCTS

Product	Description	Cat. Code
Blasticidin	Selection antibiotic	ant-bl-1
ChemiComp GT116	Competent E. coli	gt116-11
COVID-19 Product Range		
HEK-Blue ${ }^{\text {TM }}$ hACE2 Cells	Cell line	hkb-hace2
A549-hACE2-TMPRSS2 Cells	Cell Line	a549-hace2-tpsa
pUNO1-hACE2	Expression vector	puno1-hace2
pUNO1-hTMPRSS2a	Expression vector	puno1-htp2a
Anti-CoV2RBD-c1-hlgG1	RecombinantAntibody	cov2rbdc1-mab1

For a complete list of InvivoGen's COVID-19 related products visit: https://www.invivogen.com/covid-19

TECHNICAL SUPPORT
InvivoGen USA (Toll-Free): 888-457-5873
InvivoGen USA (International): +1 (858) 457-5873
InvivoGen Europe: +33 (0) 5-62-71-69-39
9 InvivoGen
InvivoGen Hong Kong: +852 3622-3480
E-mail: info@invivogen.com

201 AAGTATGCAAAGCATGCATCTCAATTAGTCAGCAACCATAGTCCCACTAGTGCTCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTCCCCGA

301 GAAGTTGGGGGGAGGGGTCGGCAATTGAACGGGTGCCTAGAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCGTGTACTGGCTCCGCCTTTTTCCC

401 GAGGGTGGGGGAGAACCGTATATAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAACGGGTTTGCCGCCAGAACACAGCTGAAGCTTCGAGGGGCTC
501 GCATCTCTCCTTCACGCGCCCGCCGCCCTACCTGAGGCCGCCATCCACGCCGGTTGAGTCGCGTTCTGCCGCCTCCCGCCTGTGGTGCCTCCTGAACTGC

601 GTCCGCCGTCTAGGTAAGTTTAAAGCTCAGGTCGAGACCGGGCCTTTGTCCGGCGCTCCCTTGGAGCCTACCTAGACTCAGCCGGCTCTCCACGCTTTGC
BspLU11 I(799)
Agel (791)
701
CTGACCCTGCTTGCTCAACTCTACGTCTTTGTTTCGTTTTCTGTTCTGCGCAGTTACAGATCCAAGCTGTGACCGGCGCCTACCTGAGATCACCGGTCAA
T20N (858)
L18F (852) P26S (876)
801 CATGTTTGTGTTCTTGGTGTTGCTTCCACTGGTCAGTTCCCAATGCGTTAATITCACCAACCGAACTCAACTCCCAICCGCATATACAAATTCCTTCACC
 901 AGAGGAGTGTACTATCCTGACAAAGTGTTTCGGTCAAGTGTCCTCCACTCTACTCAGGACCTCTTTCTGCCTTTCTTTTCTAACGTTACATGGTTTCATG
 1001 CAATCCATGTGTCTGGGACAAACGGCACCAAACGCTTCGACAACCCTGTATTGCCATTCAATGATGGGGTGTACTTTGCCTCCACAGAGAAATCCAACAT
 1101 CATTCGAGGATGGATTTTCGGGACTACTCTGGACTCAAAGACACAGAGCCTGCTGATCGTTAACAACGCCACAAACGTTGTCATCAAAGTGTGCGAATTC 100. I R G W I F G T T L D S K T Q S L L I V N N A T N V V I K V C E F D138Y (1212)
1201 CAGTTTTGCAATIATCCCTTCCTGGGAGTGTACTATCACAAGAATAACAAGTCCTGGATGGAGAGCGAATTTCGGGTCTACAGCAGCGCAAACAACTGCA 134. Q F C N Y P F L G V Y Y H K N N K S W M E S E F R V Y S S A N N C R190S (1368)
1301 CCTTCGAGTACGTGAGTCAACCCTTTCTGATGGACCTGGAAGGGAAACAGGGAAACTTCAAGAACCTGAGTGAGTTTGTCTTTAAGAACATCGACGGCTA
 1401 TTTTAAGATCTATAGTAAGCATACGCCTATCAACCTGGTAAGGGATCTTCCCCAGGGCTTTTCAGCCCTGGAACCTTTGGTTGACTTGCCTATTGGTATC 200. F K I Y S K H T P I N L V R D L P Q G F S A L E P L V D L P I G I 1501 AATATCACCAGATTTCAGACCCTTCTGGCATTGCAICGGTCTTATCTTACTCCAGGTGATTCCTCCTCCGGGTGGACTGCCGGCGCCGCTGCCTACTATG 234* N I T R F Q T L L A L H R S 1601 TCGGCTATCTGCAACCAAGAACGTTCCTGCTCAAGTACAACGAAAACGGCACTATTACGGATGCTGTTGATTGTGCCCTGGACCCTCTGTCTGAGACTAA
 1701 ATGCACCCTCAAGAGCTTTACCGTTGAGAAGGGGATTTACCAAACCAGTAATTTCCGGGTCCAACCCACCGAAAGCATTGTGCGGTTCCCAAATATCACC 300. C T L K S F T V E K G I Y Q T S N F R V Q P T E S I V R F P N I T

1801 AATCTGTGTCCCTTTGGCGAAGTGTTCAATGCTACAAGGTTTGCTTCTGTGTACGCATGGAATAGGAAACGCATCTCCAATTGTGTCGCTGATTACTCCG

1901 TGCTGTACAATTCCGCCTCTTTCTCAACCTTCAAGTGTTATGGCGTTTCACCTACCAAACTTAACGACCTGTGCTTCACTAATGTGTATGCCGACTCTTT

K417T (2049)

2001 TGTGATACGAGGCGATGAAGTGAGACAGATTGCACCAGGGCAGACCGGCACAATTGCCGACTACAACTACAAGCTTCCAGATGACTTTACCGGATGTGTT

2101 ATTGCATGGAACTCAAACAATCTGGATTCCAAGGTGGGTGGCAACTATAACTACCTGTATAGACTGTTCAGGAAATCCAACCTGAAACCATTCGAGCGAG

E484K (2250)

2201 ATATAAGCACAGAAATCTACCAGGCTGGAAGTACGCCCTGCAACGGCGTGAAAGGGTTCAACTGCTACTTCCCATTGCAGAGTTACGGATTCCAGCCTAC

N501Y (2301)

2301 ATACGGGGTGGGTTACCAACCCTATCGTGTCGTAGTCCTGAGTTTTGAGCTCCTCCATGCCCCAGCCACAGTCTGTGGCCCCAAGAAAAGCACCAATCTG

2401 GTGAAGAACAAATGCGTGAACTTTAACTTTAACGGACTCACAGGAACCGGCGTATTGACGGAGAGTAACAAGAAGTTCCTGCCATTCCAGCAGTTCGGTC 534. V K N K C V N F N F N G L T G T G V L T

2501 GCGATATTGCCGACACTACCGACGCTGTCCGAGATCCCCAGACATTGGAGATTCTTGATATCACACCCTGTAGTTTCGGCGGAGTGAGCGTGATTACGCC

2601 CGGAACCAATACCAGCAATCAGGTTGCCGTCCTGTATCAGGGCGTGAATTGCACCGAGGTACCTGTCGCCATCCACGCTGACCAACTTACACCCACATGG
 H655Y (2763)
2701 CGAGTATATTCCACCGGCTCCAACGTCTTTCAGACACGTGCTGGATGTCTGATCGGTGCAGAATACGTTAATAATAGCTACGAGTGTGATATCCCCATCG
 R685A (2853)
R683A (2847)
2801 GTGCTGGAATATGCGCCTCTTATCAAACTCAAACCAACTCTCCTAGGGCGGCAGCTAGTGTAGCATCCCAAAGTATCATTGCCTACACAATGAGCCTCGG
 2901 TGCTGAGAATTCTGTCGCCTACAGCAACAACTCCATTGCTATCCCTACTAACTTCACAATCAGTGTGACAACTGAAATTCTGCCCGTATCTATGACCAAA 700. A E N S V A Y S N N S I A I P T N F T I S V T T 3001 ACAAGCGTTGACTGCACCATGTACATCTGTGGCGATTCTACCGAATGTAGCAATCTCCTCCTGCAATACGGATCATTCTGCACTCAGCTGAATCGTGCCC
 3101 TCACAGGTATTGCAGTTGAGCAGGACAAGAATACGCAGGAAGTGTTTGCCCAGGTGAAGCAAATCTACAAAACTCCACCCATAAAAGACTTTGGCGGATT
 3201 CAATTTCTCACAGATCCTGCCCGATCCCTCAAAACCCTCCAAGCGTAGCTTTATCGAGGATCTGCTCTTCAACAAGGTAACCCTCGCAGATGCCGGTTTC
 3301 ATCAAGCAGTATGGCGATTGTCTGGGAGACATCGCCGCTCGGGACCTGATCTGTGCACAGAAGTTCAATGGACTGACCGTGCTGCCTCCCTTGCTGACCG
 3401 ACGAGATGATAGCCCAATACACTAGCGCCCTGCTGGCCGGCACCATCACTTCTGGGTGGACATTCGGAGCTGGCGCTGCCCTTCAGATTCCTTTTGCTAT 867. D E M I A Q Y T S A L L A G T I T S G W T F G A G A A L \quad Q 3501 GCAGATGGCCTACCGCTTTAACGGCATCGGTGTGACACAAAACGTTCTGTATGAAAACCAGAAACTCATCGCCAACCAGTTCAACAGTGCTATCGGTAAG
 3601 ATACAGGATAGCCTGTCATCCACTGCCAGCGCATTGGGAAAGTTGCAGGATGTAGTGAACCAGAATGCCCAGGCACTTAACACCCTGGTGAAACAGCTCT
 3701 CTTCAAATTTTGGTGCCATTTCTAGCGTGCTGAATGACATACTGAGCCGGTTGGACAAGGTGGAGGCTGAAGTGCAGATTGATAGGCTGATAACTGGGCG
 T10271 (3879)
3801 CCTTCAGTCTCTTCAGACCTATGTGACCCAGCAGCTCATCCGCGCTGCTGAAATTCGCGCATCCGCTAACCTGGCAGCAATTAAAATGTCCGAGTGTGTG
 3901 CTGGGTCAGTCTAAGAGAGTGGACTTTTGCGGGAAGGGGTATCACCTGATGTCTTTTCCTCAGTCTGCACCCCATGGTGTGGTCTTTCTGCACGTGACTT 1034 L G Q S K R V D F C G K G Y H L M
4001 ATGTCCCAGCTCAGGAAAAGAACTTCACTACAGCCCCAGCCATCTGCCACGATGGGAAAGCCCACTTTCCCAGGGAAGGCGTATTCGTGTCCAATGGTAC
 4101 TCATTGGTTCGTCACTCAGAGAAATTTCTACGAGCCCCAGATTATAACCACTGACAATACATTTGTATCCGGCAATTGTGATGTGGTTATCGGGATTGTG 1100. H W F V T Q R N F Y E P Q I I T T D N T F V S G N C D V V I G I V 4201 AATAATACTGTTTACGATCCTTTGCAGCCAGAGCTGGACTCCTTCAAGGAGGAGCTTGACAAATATTTTAAGAATCACACATCACCTGACGTCGACCTCG 1134. N N T V Y D P L Q P E L D S F K V1176F (4326)
4301 GAGATATTTCAGGAATCAATGCTTCCIITGTCAATATTCAGAAGGAGATAGACAGGCTGAATGAGGTTGCCAAGAACCTCAACGAGTCTCTGATCGATCT
 4401 GCAGGAGTTGGGCAAGTACGAACAGTATATCAAATGGCCATGGTACATTTGGCTTGGGTTCATTGCTGGGCTGATAGCTATCGTCATGGTGACAATTATG
 Nhel (4567)
4501 TTGTGTTGCATGACATCCTGCTGTAGTTGTCTGAAGGGCTGCTGCTCATGCGGCAGCTGTTGCTAAAGCTAGCTGGCCAGACATGATAAGATACATTGAT 1234. L C C M T S C C S C L K G C C

4601 GAGTTTGGACAAACCACAACTAGAATGCAGTGAAAAAAATGCTTTATTTGTGAAATTTGTGATGCTATTGCTTTATTTGTAACCATTATAAGCTGCAATA
4701 AACAAGTTAACAACAACAATTGCATTCATTTTATGTTTCAGGTTCAGGGGGAGGTGTGGGAGGTTTTTTAAAGCAAGTAAAACCTCTACAAATGTGGTAT
4801 GGAATTCTAAAATACAGCATAGCAAAACTTTAACCTCCAAATCAAGCCTCTACTTGAATCCTTTTCTGAGGGATGAATAAGGCATAGGCATCAGGGGCTG
4901 TTGCCAATGTGCATTAGCTGTTTGCAGCCTCACCTTCTTTCATGGAGTTTAAGATATAGTGTATTTTCCCAAGGTTTGAACTAGCTCTTCATTTCTTTAT
5001 GTTTTAAATGCACTGACCTCCCACATTCCCTTTTTAGTAAAATATTCAGAAATAATTTAAATACATCATTGCAATGAAAATAAATGTTTTTTATTAGGCA
5101 GAATCCAGATGCTCAAGGCCCTTCATAATATCCCCCAGTTTAGTAGTTGGACTTAGGGAACAAAGGAACCTTTAATAGAAATTGGACAGCAAGAAAGCGA
5201 GCTTCTAGCTTTAGTTCCTGGTGTACTTGAGGGGGATGAGTTCCTCAATGGTGGTTTTGACCAGCTTGCCATTCATCTCAATGAGCACAAAGCAGTCAGG 141 • N R T Y K L P I L E E I T T
5301 AGCATAGTCAGAGATGAGCTCTCTGCACATGCCACAGGGGCTGACCACCCTGATGGATCTGTCCACCTCATCAGAGTAGGGGTGCCTGACAGCCACAATG 111. A Y D S I L E R C M G C P S 5401 GTGTCAAAGTCCTTCTGCCCGTTGCTCACAGCAGACCCAATGGCAATGGCTTCAGCACAGACAGTGACCCTGCCAATGTAGGCCTCAATGTGGACAGCAG
 5501 AGATGATCTCCCCAGTCTTGGTCCTGATGGCCGCCCCGACATGGTGCTTGTTGTCCTCATAGAGCATGGTGATCTTCTCAGTGGCGACCTCCACCAGCTC 44 I I E G T K T R I A A G V H H K N D E Y L M T I K
5601 CAGATCCTGCTGAGAGATGTTGAAGGTCTTCATGATGGCCCTCCTATAGTGAGTCGTATTATACTATGCCGATATACTATGCCGATGATTAATTGTCAAA 11 L D Q Q S I N F T K M

5701 ACAGCGTGGATGGCGTCTCCAGCTTATCTGACGGTTCACTAAACGAGCTCTGCTTATATAGACCTCCCACCGTACACGCCTACCGCCCATTTGCGTCAAT
5801 GGGGCGGAGTTGTTACGACATTTTTGGAAAGTCCCGTTGATTTACTAGTCAAAACAAACTCCCATTGACGTCAATGGGGTGGAGACTTGGAAATCCCCGTG
5901 AGTCAAACCGCTATCCACGCCCATTGATGTACTGCCAAAACCGCATCATCATGGTAATAGCGATGACTAATACGTAGATGTACTGCCAAGTAGGAAAGTC
6001 CCATAAGGTCATGTACTGGGCATAATGCCAGGCGGGCCATTTACCGTCATTGACGTCAATAGGGGGCGTACTTGGCATATGATACACTTGATGTACTGCC
6101 AAGTGGGCAGTTTACCGTAAATACTCCACCCATTGACGTCAATGGAAAGTCCCTATTGGCGTTACTATGGGAACATACGTCATTATTGACGTCAATGGGC
BspLU11I (6271)
6201 GGGGGTCGTTGGGCGGTCAGCCAGGCGGGCCATTTACCGTAAGTTATGTAACGCCTGCAGGTTAATTAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCC
6301 AGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACC
6401 CGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCT
6501 CCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCC
6601 GTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGA
6701 TTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCT
6801 GAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTTGTTTGCAAGCAGCAGATTACG
6901 CGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGGCTA
7001 GTTAATTAACATTTAAATCAGCGGCCGCAATAAAATATCTTTATTTTCATTACATCTGTGTGTTGGTTTTTTGTGTGAATCGTAACTAACATACGCTCTC -
7101 CATCAAAACAAAACGAAACAAAACAAACTAGCAAAATAGGCTGTCCCCAGTGCAAGTGCAGGTGCCAGAACATTTCTCTATCGAA

